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Scientific Objectives

3D representation of microstructure
morphology via FIB serial sectioning

Parallel, secondary
strengthening phase laths

» Elucidate microstructure formation pathways.
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* Combine advanced characterization techniques
with state-of-the-art computation simulations to B " Disiocation Q‘_
determine deformation mechanisms in tantalum ’ § o

carbide ceramics.

Scientific Challenges

» Quantify 2D and 3D lath features in
microstructure.
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Frank-Reed dislocation First-principle

source mechanism for  Ganeralized Stacking
deformation in Ta,C Fault Energy curves

Scientific Breakthrough

3D representation through tomography
» Laths are both continuous and discontinuous.
Plate-like structures that are tens of nm’s thick
» Parent phase symmetry conditions govern morphology
» Precipitation from TaC with equivalent {111}
variants yields crisscross pattern of phases
» Precipitation from Ta,C with single {0001} plane
yields all laths parallel. Also generates acicular
grain structure.
» Deformation mechanisms
» Basal and non-basal slip in Ta,C. First principle
calculations highlight low barriers for deformation
»HRTEM reveals faulting on Ta-Ta not Ta-C bonds
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Pinned dislocations

» What is the relationship between the matrix and
precipitate phases?

» How and under what circumstances do
precipitates control microstructures?

» Determine atomistic conditions for macroscopic
deformation.
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* Find evidence for dislocations mechanisms.



Us ARMY

¥ RDECOM

Non- continuous

Motivation: Tantalum carbides are a class of ) Py @542@??
ultrahigh melting temperature materials. The _ ' 58 o AN T
precipitation of Ta-rich carbide phases in TaC
control microstructure (hence thermo-
mechanical properties)

» How do these phase form?

»How do they control microstructure? o\ R v
Apply 2D and 3D Microscopy continuous y |
S A el 5 um X
1500 g 2% Ta,ClTa,C, precipitates out of eqwaxed TaC grains maintaining close packed planes and
! directions. TaC is a rock-salt structure with four varients of {111} planes yielding crisscross
000 iy pattern of Iaths within the gralns which are and are not continuous in the grain.
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Phase diagram taken from O. M. - | '
Barabash and Y. N. Koval, A Secondary strengthenlng phase laths span the entire acicular Ta,C grains. These laths are along

Handbook on the Structure and major axis of the acicular grains. These TaC/Ta,C; secondary phases precipitate from Ta,C, which
Properties of Metals and Alloys.1986 has only one close packed plane, (0001), controlling orientation and grain shape
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Ta,C four-point bend test at ~2000°C shows significant plasticity. Deformation
mechanisms include basal and non-basal slip (dislocations) and stacking faults.
Collaboration with Dr. Chris Weinberger, Sandia National Laboratories, provided
first principle calculations of Generalized Stacking Fault Energies.

HRTEM confirms faults on
O 1ama layers, consistent
¢ with modeling predictions
Q for easily slip directions

Ta-Ta bonds << Ta-C bonds
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